赛派号

mnist数据集读取及保存图片 深度学习之MNIST数据集的导入

实例描述: 从MNIST数据集中选择一副图,这幅图上有一个手写的数字,让机器模拟人眼来区分这个手写的数字到底是几。 实现步骤: (1)导入MNIST数据集; (2)分析MNIST样本特点定义变量; (3)构建模型; (4)训练模型并输出中间状态参数; (5)测试模型; (6)保存模型; (7)读取模型; 使用工具: 操作系统win7, Spyder(Anaconda3), 准备工作: 若想实现实例功能,必须先导入MNIST数据集。MNIST数据集是一个入门级的计算机视觉数据集。其基础程度,相当于学编程时第一件事往往是学习打印Hello World。数据集里包含各种手写数字图片,可通过编写以下代码,自动下载数据集并解压到自定义的目录下。

from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("D:/Anaconda3Project/MNIST_data/", one_hot=True) # 路径为自定义,可根据实际情况选择数据集存放路径 # one_hot=True,表示将样本标签转化为one_hot编码。例如:一共10类,0的one_hot为1000000000,1的one_hot为0100000000.......以此类推,只有一个位为1,1所在的位置就代表着第几类。

但在实际操作中,自动下载并不能成功,会出现下面的错误: 在这里插入图片描述 所以,采用第二种方法,手动导入。在MNIST数据集官网[http://yann.lecun.com/exdb/mnist/]手动下载数据集。如图: 左下角四行红色链接依次下载即可,切记,不要解压!不要解压!不要解压! 将四个压缩包放在和你代码同级的目录下,比如:我把“MNIST数据集测试.py”文件存放在“D:/Anaconda3Project/”下,那么将四个压缩包也放在“D:/Anaconda3Project/”下,如图: 在这里插入图片描述 这还没完,还需要将如下代码命名为input_data.py。

# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for downloading and reading MNIST data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gzip import os import tensorflow.python.platform import numpy from six.moves import urllib from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' def maybe_download(filename, work_directory): """Download the data from Yann's website, unless it's already here.""" if not os.path.exists(work_directory): os.mkdir(work_directory) filepath = os.path.join(work_directory, filename) if not os.path.exists(filepath): filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath) statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') return filepath def _read32(bytestream): dt = numpy.dtype(numpy.uint32).newbyteorder('>') return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] def extract_images(filename): """Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" print('Extracting', filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, filename)) num_images = _read32(bytestream) rows = _read32(bytestream) cols = _read32(bytestream) buf = bytestream.read(rows * cols * num_images) data = numpy.frombuffer(buf, dtype=numpy.uint8) data = data.reshape(num_images, rows, cols, 1) return data def dense_to_one_hot(labels_dense, num_classes=10): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = numpy.arange(num_labels) * num_classes labels_one_hot = numpy.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.rel()] = 1 return labels_one_hot def extract_labels(filename, one_hot=False): """Extract the labels into a 1D uint8 numpy array [index].""" print('Extracting', filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, filename)) num_items = _read32(bytestream) buf = bytestream.read(num_items) labels = numpy.frombuffer(buf, dtype=numpy.uint8) if one_hot: return dense_to_one_hot(labels) return labels class DataSet(object): def __init__(self, images, labels, fake_data=False, one_hot=False, dtype=tf.float32): """Construct a DataSet. one_hot arg is used only if fake_data is true. `dtype` can be either `uint8` to lee the input as `[0, 255]`, or `float32` to rescale into `[0, 1]`. """ dtype = tf.as_dtype(dtype).base_dtype if dtype not in (tf.uint8, tf.float32): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype) if fake_data: self._num_examples = 10000 self.one_hot = one_hot else: assert images.shape[0] == labels.shape[0], ( 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) if dtype == tf.float32: # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0 @property def images(self): return self._images @property def labels(self): return self._labels @property def num_examples(self): return self._num_examples @property def epochs_completed(self): return self._epochs_completed def next_batch(self, batch_size, fake_data=False): """Return the next `batch_size` examples from this data set.""" if fake_data: fake_image = [1] * 784 if self.one_hot: fake_label = [1] + [0] * 9 else: fake_label = 0 return [fake_image for _ in xrange(batch_size)], [ fake_label for _ in xrange(batch_size)] start = self._index_in_epoch self._index_in_epoch += batch_size if self._index_in_epoch > self._num_examples: # Finished epoch self._epochs_completed += 1 # Shuffle the data perm = numpy.arange(self._num_examples) numpy.random.shuffle(perm) self._images = self._images[perm] self._labels = self._labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size assert batch_size

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至lsinopec@gmail.com举报,一经查实,本站将立刻删除。

上一篇 没有了

下一篇没有了