赛派号

40岁女人用什么精华最好用 GitHub

Video-LLaVA: Learning United Visual Representation by Alignment Before Projection If you like our project, please give us a star ⭐ on GitHub for latest update.

hf_space Open in OpenXLab Studios Replicate demo and cloud API arXiv License Hits GitHub issues GitHub closed issues zhihu zhihu zhihu zhihu zhihu zhihu zhihu

PWC PWC PWC

💡 I also he other video-language projects that may interest you ✨.

Open-Sora Plan: Open-Source Large Video Generation Model Bin Lin and Yunyang Ge and Xinhua Cheng and Zongjian Li and Bin Zhu and Shaodong Wang and Xianyi He and Yang Ye and Shenghai Yuan and Liuhan Chen and Tanghui Jia and Junwu Zhang and Zhenyu Tang and Yatian Pang and Bin She and Cen Yan and Zhiheng Hu and Xiaoyi Dong and Lin Chen and Zhang Pan and Xing Zhou and Shaoling Dong and Yonghong Tian and Li Yuan github github arXiv

MoE-LLaVA: Mixture of Experts for Large Vision-Language Models Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Junwu Zhang, Munan Ning, Li Yuan github github arXiv

LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, HongFa Wang, Yatian Pang, Wenhao Jiang, Junwu Zhang, Zongwei Li, Wancai Zhang, Zhifeng Li, Wei Liu, Li Yuan github github arXiv

📰 News [2024.09.25] 🔥🔥🔥 Our Video-LLaVA has been accepted at EMNLP 2024! We earn the meta score of 4. [2024.07.27] 🔥🔥🔥 A fine-tuned Video-LLaVA focuses on theme exploration, narrative analysis, and character dynamics. Thanks to @micuelll. , CinePile addresses these overlooked areas with fine-tuning Video-LLaVA in their benchmark. [2024.05.15] 🤝🤝🤝 Thanks to the generous contributions of @zucchini-nlp, Video-LLaVa now ailable in the Transformers library! More details here. [2024.01.27] 👀👀👀 Our MoE-LLaVA is released! A sparse model with 3B parameters outperformed the dense model with 7B parameters. [2024.01.17] 🔥🔥🔥 Our LanguageBind has been accepted at ICLR 2024! [2024.01.16] 🔥🔥🔥 We reorganize the code and support LoRA fine-tuning, checking finetune_lora.sh. [2023.11.30] 🤝 Thanks to the generous contributions of the community, the OpenXLab's demo is now accessible. [2023.11.23] We are training a new and powerful model. [2023.11.21] 🤝 Check out the replicate demo, created by @nateraw, who has generously supported our research! [2023.11.20] 🤗 Hugging Face demo and all codes & datasets are ailable now! Welcome to watch 👀 this repository for the latest updates. 😮 Highlights

Video-LLaVA exhibits remarkable interactive capabilities between images and videos, despite the absence of image-video pairs in the dataset.

💡 Simple baseline, learning united visual representation by alignment before projection With the binding of unified visual representations to the language feature space, we enable an LLM to perform visual reasoning capabilities on both images and videos simultaneously. 🔥 High performance, complementary learning with video and image Extensive experiments demonstrate the complementarity of modalities, showcasing significant superiority when compared to models specifically designed for either images or videos.

🤗 Demo Gradio Web UI

Highly recommend trying out our web demo by the following command, which incorporates all features currently supported by Video-LLaVA. We also provide online demo in Huggingface Spaces.

python -m videolla.serve.gradio_web_server demo.mp4 CLI Inference CUDA_VISIBLE_DEVICES=0 python -m videolla.serve.cli --model-path "LanguageBind/Video-LLaVA-7B" --file "path/to/your/video.mp4" --load-4bit

CUDA_VISIBLE_DEVICES=0 python -m videolla.serve.cli --model-path "LanguageBind/Video-LLaVA-7B" --file "path/to/your/image.jpg" --load-4bit

🚀 Main Results Image understanding

Video understanding

🛠️ Requirements and Installation Python >= 3.10 Pytorch == 2.0.1 CUDA Version >= 11.7 Install required packages: git clone https://github.com/PKU-YuanGroup/Video-LLaVA cd Video-LLaVA conda create -n videolla python=3.10 -y conda activate videolla pip install --upgrade pip # enable PEP 660 support pip install -e . pip install -e ".[train]" pip install flash-attn --no-build-isolation pip install decord opencv-python git+https://github.com/facebookresearch/pytorchvideo.git@28fe037d212663c6a24f373b94cc5d478c8c1a1d 🤖 API

Warning

🚨 Upgrade transformers for quick access. pip install -U transformers

If you need to install then do

python -m pip install import import numpy as np from transformers import VideoLlaProcessor, VideoLlaForConditionalGeneration def read_video_py(container, indices): frames = [] container.seek(0) start_index = indices[0] end_index = indices[-1] for i, frame in enumerate(container.decode(video=0)): if i > end_index: break if i >= start_index and i in indices: frames.append(frame) return np.stack([x.to_ndarray(format="rgb24") for x in frames]) model = VideoLlaForConditionalGeneration.from_pretrained("LanguageBind/Video-LLaVA-7B-hf") processor = VideoLlaProcessor.from_pretrained("LanguageBind/Video-LLaVA-7B-hf") prompt = "USER: Why is this video funny? ASSISTANT:" video_path = "YOUR-LOCAL-VIDEO-PATH" container = .open(video_path) # sample uniformly 8 frames from the video total_frames = container.streams.video[0].frames indices = np.arange(0, total_frames, total_frames / 8).astype(int) clip = read_video_py(container, indices) inputs = processor(text=prompt, videos=clip, return_tensors="pt") # Generate generate_ids = model.generate(**inputs, max_length=80) print(processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]) >>> 'USER: Why is this video funny? ASSISTANT: The video is funny because the baby is sitting on the bed and reading a book, which is an unusual and amusing sight.' outdated

We open source all codes. If you want to load the model (e.g. LanguageBind/Video-LLaVA-7B) on local, you can use the following code snippets.

Inference for image import torch from videolla.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN from videolla.conversation import conv_templates, SeparatorStyle from videolla.model.builder import load_pretrained_model from videolla.utils import disable_torch_init from videolla.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria def main(): disable_torch_init() image = 'videolla/serve/examples/extreme_ironing.jpg' inp = 'What is unusual about this image?' model_path = 'LanguageBind/Video-LLaVA-7B' cache_dir = 'cache_dir' device = 'cuda' load_4bit, load_8bit = True, False model_name = get_model_name_from_path(model_path) tokenizer, model, processor, _ = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device, cache_dir=cache_dir) image_processor = processor['image'] conv_mode = "lla_v1" conv = conv_templates[conv_mode].copy() roles = conv.roles image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'] if type(image_tensor) is list: tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor] else: tensor = image_tensor.to(model.device, dtype=torch.float16) print(f"{roles[1]}: {inp}") inp = DEFAULT_IMAGE_TOKEN + '\n' + inp conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=tensor, do_sample=True, temperature=0.2, max_new_tokens=1024, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() print(outputs) if __name__ == '__main__': main() Inference for video import torch from videolla.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN from videolla.conversation import conv_templates, SeparatorStyle from videolla.model.builder import load_pretrained_model from videolla.utils import disable_torch_init from videolla.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria def main(): disable_torch_init() video = 'videolla/serve/examples/sample_demo_1.mp4' inp = 'Why is this video funny?' model_path = 'LanguageBind/Video-LLaVA-7B' cache_dir = 'cache_dir' device = 'cuda' load_4bit, load_8bit = True, False model_name = get_model_name_from_path(model_path) tokenizer, model, processor, _ = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device, cache_dir=cache_dir) video_processor = processor['video'] conv_mode = "lla_v1" conv = conv_templates[conv_mode].copy() roles = conv.roles video_tensor = video_processor(video, return_tensors='pt')['pixel_values'] if type(video_tensor) is list: tensor = [video.to(model.device, dtype=torch.float16) for video in video_tensor] else: tensor = video_tensor.to(model.device, dtype=torch.float16) print(f"{roles[1]}: {inp}") inp = ' '.join([DEFAULT_IMAGE_TOKEN] * model.get_video_tower().config.num_frames) + '\n' + inp conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=tensor, do_sample=True, temperature=0.1, max_new_tokens=1024, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() print(outputs) if __name__ == '__main__': main() 🗝️ Training & Validating

The training & validating instruction is in TRAIN_AND_VALIDATE.md.

👍 Acknowledgement LLaVA The codebase we built upon and it is an efficient large language and vision assistant. Video-ChatGPT Great job contributing the evaluation code and dataset. 🙌 Related Projects LanguageBind An open source five modalities language-based retrieval framework. Chat-UniVi This framework empowers the model to efficiently utilize a limited number of visual tokens. 🔒 License The majority of this project is released under the Apache 2.0 license as found in the LICENSE file. The service is a research preview intended for non-commercial use only, subject to the model License of LLaMA, Terms of Use of the data generated by OpenAI, and Privacy Practices of ShareGPT. Please contact us if you find any potential violation. ✏️ Citation

If you find our paper and code useful in your research, please consider giving a star ⭐ and citation 📝.

@article{lin2023video, title={Video-LLaVA: Learning United Visual Representation by Alignment Before Projection}, author={Lin, Bin and Zhu, Bin and Ye, Yang and Ning, Munan and Jin, Peng and Yuan, Li}, journal={arXiv preprint arXiv:2311.10122}, year={2023} } @article{zhu2023languagebind, title={LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment}, author={Zhu, Bin and Lin, Bin and Ning, Munan and Yan, Yang and Cui, Jiaxi and Wang, HongFa and Pang, Yatian and Jiang, Wenhao and Zhang, Junwu and Li, Zongwei and others}, journal={arXiv preprint arXiv:2310.01852}, year={2023} } ✨ Star History

Star History

🤝 Contributors

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至lsinopec@gmail.com举报,一经查实,本站将立刻删除。

上一篇 没有了

下一篇没有了