1、面向对象的特征有哪些方面?
抽象:将同类对象的共同特征提取出来构造类。继承:基于基类创建新类。封装:将数据隐藏起来,对数据的访问只能通过特定接口。多态性:不同子类型对象对相同消息作出不同响应。2、访问修饰符public,private,protected,以及不写(默认)时的区别?

protected 当前类,同包,异包子类。
3、String 是最基本的数据类型吗?
答:不是。Ja中的基本数据类型只有8个:byte、short、int、long、float、double、char、boolean;除了基本类型(primitive type),剩下的都是引用类型(reference type),Ja 5以后引入的枚举类型也算是一种比较特殊的引用类型。
4、float f=3.4;是否正确?
答:不正确。3.4是双精度数,将双精度型(double)赋值给浮点型(float)属于下转型(down-casting,也称为窄化)会造成精度损失,因此需要强制类型转换float f =(float)3.4; 或者写成float f =3.4F;
5、short s1 = 1; s1 = s1 + 1;有错吗?short s1 = 1; s1 += 1;有错吗?
答:对于short s1 = 1; s1 = s1 + 1;由于1是int类型,因此s1+1运算结果也是int 型,需要强制转换类型才能赋值给short型。而short s1 = 1; s1 += 1;可以正确编译,因为s1+= 1;相当于s1 = (short)(s1 + 1);其中有隐含的强制类型转换。
6、Ja有没有goto?
答:goto 是Ja中的保留字,在目前版本的Ja中没有使用。(根据James Gosling(Ja之父)编写的《The Ja Programming Language》一书的附录中给出了一个Ja关键字列表,其中有goto和const,但是这两个是目前无法使用的关键字,因此有些地方将其称之为保留字,其实保留字这个词应该有更广泛的意义,因为熟悉C语言的程序员都知道,在系统类库中使用过的有特殊意义的单词或单词的组合都被视为保留字)
7、int和Integer有什么区别?
答:Ja是一个近乎纯洁的面向对象编程语言,但是为了编程的方便还是引入了基本数据类型,但是为了能够将这些基本数据类型当成对象操作,Ja为每一个基本数据类型都引入了对应的包装类型(wrapper class),int的包装类就是Integer,从Ja 5开始引入了自动装箱/拆箱机制,使得二者可以相互转换。Ja 为每个原始类型提供了包装类型:
原始类型: boolean,char,byte,short,int,long,float,double包装类型:Boolean,Character,Byte,Short,Integer,Long,Float,Doubleclass AutoUnboxingTest { public static void main(String[] args) { Integer a = new Integer(3); Integer b = 3; // 将3自动装箱成Integer类型 int c = 3; System.out.println(a == b); // false 两个引用没有引用同一对象 System.out.println(a == c); // true a自动拆箱成int类型再和c比较 } } class AutoUnboxingTest { public static void main(String[] args) { Integer a = new Integer(3); Integer b = 3; // 将3自动装箱成Integer类型 int c = 3; System.out.println(a == b); // false 两个引用没有引用同一对象 System.out.println(a == c); // true a自动拆箱成int类型再和c比较 } }最近还遇到一个面试题,也是和自动装箱和拆箱有点关系的,代码如下所示:
public class Test03 { public static void main(String[] args) { Integer f1 = 100, f2 = 100, f3 = 150, f4 = 150; System.out.println(f1 == f2); System.out.println(f3 == f4); } } public class Test03 { public static void main(String[] args) { Integer f1 = 100, f2 = 100, f3 = 150, f4 = 150; System.out.println(f1 == f2); System.out.println(f3 == f4); } }如果不明就里很容易认为两个输出要么都是true要么都是false。首先需要注意的是f1、f2、f3、f4四个变量都是Integer对象引用,所以下面的==运算比较的不是值而是引用。装箱的本质是什么呢?当我们给一个Integer对象赋一个int值的时候,会调用Integer类的静态方法valueOf,如果看看valueOf的源代码就知道发生了什么。
public static Integer valueOf(int i) { if (i >= IntegerCache.low && i = IntegerCache.low && i = 127; } private IntegerCache() {} } /** * Cache to support the object identity semantics of autoboxing for values between * -128 and 127 (inclusive) as required by JLS. * * The cache is initialized on first usage. The size of the cache * may be controlled by the {@code -XX:AutoBoxCacheMax=} option. * During VM initialization, ja.lang.Integer.IntegerCache.high property * may be set and sed in the private system properties in the * sun.misc.VM class. */ private static class IntegerCache { static final int low = -128; static final int high; static final Integer cache[]; static { // high value may be configured by property int h = 127; String integerCacheHighPropValue = sun.misc.VM.getSedProperty("ja.lang.Integer.IntegerCache.high"); if (integerCacheHighPropValue != null) { try { int i = parseInt(integerCacheHighPropValue); i = Math.max(i, 127); // Maximum array size is Integer.MAX_VALUE h = Math.min(i, Integer.MAX_VALUE - (-low) -1); } catch( NumberFormatException nfe) { // If the property cannot be parsed into an int, ignore it. } } high = h; cache = new Integer[(high - low) + 1]; int j = low; for(int k = 0; k < cache.length; k++) cache[k] = new Integer(j++); // range [-128, 127] must be interned (JLS7 5.1.7) assert IntegerCache.high >= 127; } private IntegerCache() {} }简单的说,如果整型字面量的值在-128到127之间,那么不会new新的Integer对象,而是直接引用常量池中的Integer对象,所以上面的面试题中f1==f2的结果是true,而f3==f4的结果是false。
提醒:越是貌似简单的面试题其中的玄机就越多,需要面试者有相当深厚的功力。
8、&和&&的区别?
答:&运算符有两种用法:(1)按位与;(2)逻辑与。&&运算符是短路与运算。逻辑与跟短路与的差别是非常巨大的,虽然二者都要求运算符左右两端的布尔值都是true整个表达式的值才是true。&&之所以称为短路运算是因为,如果&&左边的表达式的值是false,右边的表达式会被直接短路掉,不会进行运算。很多时候我们可能都需要用&&而不是&,例如在验证用户登录时判定用户名不是null而且不是空字符串,应当写为:username != null &&!username.equals(""),二者的顺序不能交换,更不能用&运算符,因为第一个条件如果不成立,根本不能进行字符串的equals比较,否则会产生NullPointerException异常。注意:逻辑或运算符(|)和短路或运算符(||)的差别也是如此。
补充:如果你熟悉JaScript,那你可能更能感受到短路运算的强大,想成为JaScript的高手就先从玩转短路运算开始吧。
9、解释内存中的栈(stack)、堆(heap)和方法区(method area)的用法。
答:通常我们定义一个基本数据类型的变量,一个对象的引用,还有就是函数调用的现场保存都使用JVM中的栈空间;而通过new关键字和构造器创建的对象则放在堆空间,堆是垃圾收集器管理的主要区域,由于现在的垃圾收集器都采用分代收集算法,所以堆空间还可以细分为新生代和老生代,再具体一点可以分为Eden、Survivor(又可分为From Survivor和To Survivor)、Tenured;方法区和堆都是各个线程共享的内存区域,用于存储已经被JVM加载的类信息、常量、静态变量、JIT编译器编译后的代码等数据;程序中的字面量(literal)如直接书写的100、"hello"和常量都是放在常量池中,常量池是方法区的一部分,。栈空间操作起来最快但是栈很小,通常大量的对象都是放在堆空间,栈和堆的大小都可以通过JVM的启动参数来进行调整,栈空间用光了会引发StackOverflowError,而堆和常量池空间不足则会引发OutOfMemoryError。
String str = new String("hello"); String str = new String("hello");上面的语句中变量str放在栈上,用new创建出来的字符串对象放在堆上,而"hello"这个字面量是放在方法区的。
补充1:较新版本的Ja(从Ja 6的某个更新开始)中,由于JIT编译器的发展和"逃逸分析"技术的逐渐成熟,栈上分配、标量替换等优化技术使得对象一定分配在堆上这件事情已经变得不那么绝对了。
补充2:运行时常量池相当于Class文件常量池具有动态性,Ja语言并不要求常量一定只有编译期间才能产生,运行期间也可以将新的常量放入池中,String类的intern()方法就是这样的。
看看下面代码的执行结果是什么并且比较一下Ja 7以前和以后的运行结果是否一致。
String s1 = new StringBuilder("go") .append("od").toString(); System.out.println(s1.intern() == s1); String s2 = new StringBuilder("ja") .append("va").toString(); System.out.println(s2.intern() == s2); String s1 = new StringBuilder("go") .append("od").toString(); System.out.println(s1.intern() == s1); String s2 = new StringBuilder("ja") .append("va").toString(); System.out.println(s2.intern() == s2);10、Math.round(11.5) 等于多少?Math.round(-11.5)等于多少?
答:Math.round(11.5)的返回值是12,Math.round(-11.5)的返回值是-11。四舍五入的原理是在参数上加0.5然后进行下取整。
11、switch 是否能作用在byte 上,是否能作用在long 上,是否能作用在String上?
答:在Ja 5以前,switch(expr)中,expr只能是byte、short、char、int。从Ja 5开始,Ja中引入了枚举类型,expr也可以是enum类型,从Ja 7开始,expr还可以是字符串(String),但是长整型(long)在目前所有的版本中都是不可以的。
12、用最有效率的方法计算2乘以8?
答: 2 c = f.getType().getDeclaredConstructor(); c.setAccessible(true); val = c.newInstance(); f.set(target, val); } target = val; clazz = target.getClass(); } Field f = clazz.getDeclaredField(fs[fs.length - 1]); f.setAccessible(true); f.set(target, value); } catch (Exception e) { throw new RuntimeException(e); } } } import ja.lang.reflect.Constructor; import ja.lang.reflect.Field; import ja.lang.reflect.Modifier; import ja.util.ArrayList; import ja.util.List; /** * 反射工具类 * @author nnngu * */ public class ReflectionUtil { private ReflectionUtil() { throw new AssertionError(); } /** * 通过反射取对象指定字段(属性)的值 * @param target 目标对象 * @param fieldName 字段的名字 * @throws 如果取不到对象指定字段的值则抛出异常 * @return 字段的值 */ public static Object getValue(Object target, String fieldName) { Class clazz = target.getClass(); String[] fs = fieldName.split("\\."); try { for(int i = 0; i < fs.length - 1; i++) { Field f = clazz.getDeclaredField(fs[i]); f.setAccessible(true); target = f.get(target); clazz = target.getClass(); } Field f = clazz.getDeclaredField(fs[fs.length - 1]); f.setAccessible(true); return f.get(target); } catch (Exception e) { throw new RuntimeException(e); } } /** * 通过反射给对象的指定字段赋值 * @param target 目标对象 * @param fieldName 字段的名称 * @param value 值 */ public static void setValue(Object target, String fieldName, Object value) { Class clazz = target.getClass(); String[] fs = fieldName.split("\\."); try { for(int i = 0; i < fs.length - 1; i++) { Field f = clazz.getDeclaredField(fs[i]); f.setAccessible(true); Object val = f.get(target); if(val == null) { Constructor c = f.getType().getDeclaredConstructor(); c.setAccessible(true); val = c.newInstance(); f.set(target, val); } target = val; clazz = target.getClass(); } Field f = clazz.getDeclaredField(fs[fs.length - 1]); f.setAccessible(true); f.set(target, value); } catch (Exception e) { throw new RuntimeException(e); } } }
88、如何通过反射调用对象的方法?
答:请看下面的代码:
import ja.lang.reflect.Method; class MethodInvokeTest { public static void main(String[] args) throws Exception { String str = "hello"; Method m = str.getClass().getMethod("toUpperCase"); System.out.println(m.invoke(str)); // HELLO } } import ja.lang.reflect.Method; class MethodInvokeTest { public static void main(String[] args) throws Exception { String str = "hello"; Method m = str.getClass().getMethod("toUpperCase"); System.out.println(m.invoke(str)); // HELLO } }89、简述一下面向对象的"六原则一法则"。
答:
单一职责原则:一个类只做它该做的事情。(单一职责原则想表达的就是"高内聚",写代码最终极的原则只有六个字"高内聚、低耦合",就如同葵花宝典或辟邪剑谱的中心思想就八个字"欲练此功必先自宫",所谓的高内聚就是一个代码模块只完成一项功能,在面向对象中,如果只让一个类完成它该做的事,而不涉及与它无关的领域就是践行了高内聚的原则,这个类就只有单一职责。我们都知道一句话叫"因为专注,所以专业",一个对象如果承担太多的职责,那么注定它什么都做不好。这个世界上任何好的东西都有两个特征,一个是功能单一,好的相机绝对不是电视购物里面卖的那种一个机器有一百多种功能的,它基本上只能照相;另一个是模块化,好的自行车是组装车,从减震叉、刹车到变速器,所有的部件都是可以拆卸和重新组装的,好的乒乓球拍也不是成品拍,一定是底板和胶皮可以拆分和自行组装的,一个好的软件系统,它里面的每个功能模块也应该是可以轻易的拿到其他系统中使用的,这样才能实现软件复用的目标。)开闭原则:软件实体应当对扩展开放,对修改关闭。(在理想的状态下,当我们需要为一个软件系统增加新功能时,只需要从原来的系统派生出一些新类就可以,不需要修改原来的任何一行代码。要做到开闭有两个要点:①抽象是关键,一个系统中如果没有抽象类或接口系统就没有扩展点;②封装可变性,将系统中的各种可变因素封装到一个继承结构中,如果多个可变因素混杂在一起,系统将变得复杂而混乱,如果不清楚如何封装可变性,可以参考《设计模式精解》一书中对桥梁模式的讲解的章节。)依赖倒转原则:面向接口编程。(该原则说得直白和具体一些就是声明方法的参数类型、方法的返回类型、变量的引用类型时,尽可能使用抽象类型而不用具体类型,因为抽象类型可以被它的任何一个子类型所替代,请参考下面的里氏替换原则。)里氏替换原则:任何时候都可以用子类型替换掉父类型。(关于里氏替换原则的描述,Barbara Liskov女士的描述比这个要复杂得多,但简单的说就是能用父类型的地方就一定能使用子类型。里氏替换原则可以检查继承关系是否合理,如果一个继承关系违背了里氏替换原则,那么这个继承关系一定是错误的,需要对代码进行重构。例如让猫继承狗,或者狗继承猫,又或者让正方形继承长方形都是错误的继承关系,因为你很容易找到违反里氏替换原则的场景。需要注意的是:子类一定是增加父类的能力而不是减少父类的能力,因为子类比父类的能力更多,把能力多的对象当成能力少的对象来用当然没有任何问题。)接口隔离原则:接口要小而专,绝不能大而全。(臃肿的接口是对接口的污染,既然接口表示能力,那么一个接口只应该描述一种能力,接口也应该是高度内聚的。例如,琴棋书画就应该分别设计为四个接口,而不应设计成一个接口中的四个方法,因为如果设计成一个接口中的四个方法,那么这个接口很难用,毕竟琴棋书画四样都精通的人还是少数,而如果设计成四个接口,会几项就实现几个接口,这样的话每个接口被复用的可能性是很高的。Ja中的接口代表能力、代表约定、代表角色,能否正确的使用接口一定是编程水平高低的重要标识。)合成聚合复用原则:优先使用聚合或合成关系复用代码。(通过继承来复用代码是面向对象程序设计中被滥用得最多的东西,因为所有的教科书都无一例外的对继承进行了鼓吹从而误导了初学者,类与类之间简单的说有三种关系,Is-A关系、Has-A关系、Use-A关系,分别代表继承、关联和依赖。其中,关联关系根据其关联的强度又可以进一步划分为关联、聚合和合成,但说白了都是Has-A关系,合成聚合复用原则想表达的是优先考虑Has-A关系而不是Is-A关系复用代码,原因嘛可以自己从百度上找到一万个理由,需要说明的是,即使在Ja的API中也有不少滥用继承的例子,例如Properties类继承了Hashtable类,Stack类继承了Vector类,这些继承明显就是错误的,更好的做法是在Properties类中放置一个Hashtable类型的成员并且将其键和值都设置为字符串来存储数据,而Stack类的设计也应该是在Stack类中放一个Vector对象来存储数据。记住:任何时候都不要继承工具类,工具是可以拥有并可以使用的,而不是拿来继承的。)迪米特法则:迪米特法则又叫最少知识原则,一个对象应当对其他对象有尽可能少的了解。(迪米特法则简单的说就是如何做到"低耦合",门面模式和调停者模式就是对迪米特法则的践行。对于门面模式可以举一个简单的例子,你去一家公司洽谈业务,你不需要了解这个公司内部是如何运作的,你甚至可以对这个公司一无所知,去的时候只需要找到公司入口处的前台美女,告诉她们你要做什么,她们会找到合适的人跟你接洽,前台的美女就是公司这个系统的门面。再复杂的系统都可以为用户提供一个简单的门面,Ja Web开发中作为前端控制器的Servlet或Filter不就是一个门面吗,浏览器对服务器的运作方式一无所知,但是通过前端控制器就能够根据你的请求得到相应的服务。调停者模式也可以举一个简单的例子来说明,例如一台计算机,CPU、内存、硬盘、显卡、声卡各种设备需要相互配合才能很好的工作,但是如果这些东西都直接连接到一起,计算机的布线将异常复杂,在这种情况下,主板作为一个调停者的身份出现,它将各个设备连接在一起而不需要每个设备之间直接交换数据,这样就减小了系统的耦合度和复杂度,如下图所示。迪米特法则用通俗的话来将就是不要和陌生人打交道,如果真的需要,找一个自己的朋友,让他替你和陌生人打交道。)


90、简述一下你了解的设计模式。
答:所谓设计模式,就是一套被反复使用的代码设计经验的总结(情境中一个问题经过证实的一个解决方案)。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性。设计模式使人们可以更加简单方便的复用成功的设计和体系结构。将已证实的技术表述成设计模式也会使新系统开发者更加容易理解其设计思路。在GoF的《Design Patterns: Elements of Reusable Object-Oriented Software》中给出了三类(创建型[对类的实例化过程的抽象化]、结构型[描述如何将类或对象结合在一起形成更大的结构]、行为型[对在不同的对象之间划分责任和算法的抽象化])共23种设计模式,包括:Abstract Factory(抽象工厂模式),Builder(建造者模式),Factory Method(工厂方法模式),Prototype(原始模型模式),Singleton(单例模式);Facade(门面模式),Adapter(适配器模式),Bridge(桥梁模式),Composite(合成模式),Decorator(装饰模式),Flyweight(享元模式),Proxy(代理模式);Command(命令模式),Interpreter(解释器模式),Visitor(访问者模式),Iterator(迭代子模式),Mediator(调停者模式),Memento(备忘录模式),Observer(观察者模式),State(状态模式),Strategy(策略模式),Template Method(模板方法模式), Chain Of Responsibility(责任链模式)。面试被问到关于设计模式的知识时,可以拣最常用的作答,例如:
工厂模式:工厂类可以根据条件生成不同的子类实例,这些子类有一个公共的抽象父类并且实现了相同的方法,但是这些方法针对不同的数据进行了不同的操作(多态方法)。当得到子类的实例后,开发人员可以调用基类中的方法而不必考虑到底返回的是哪一个子类的实例。代理模式:给一个对象提供一个代理对象,并由代理对象控制原对象的引用。实际开发中,按照使用目的的不同,代理可以分为:远程代理、虚拟代理、保护代理、Cache代理、防火墙代理、同步化代理、智能引用代理。适配器模式:把一个类的接口变换成客户端所期待的另一种接口,从而使原本因接口不匹配而无法在一起使用的类能够一起工作。模板方法模式:提供一个抽象类,将部分逻辑以具体方法或构造器的形式实现,然后声明一些抽象方法来迫使子类实现剩余的逻辑。不同的子类可以以不同的方式实现这些抽象方法(多态实现),从而实现不同的业务逻辑。除此之外,还可以讲讲上面提到的门面模式、桥梁模式、单例模式、装潢模式(Collections工具类和I/O系统中都使用装潢模式)等,反正基本原则就是拣自己最熟悉的、用得最多的作答,以免言多必失。91、用Ja写一个单例类。
答:
饿汉式单例public class Singleton { private Singleton(){} private static Singleton instance = new Singleton(); public static Singleton getInstance(){ return instance; } } public class Singleton { private Singleton(){} private static Singleton instance = new Singleton(); public static Singleton getInstance(){ return instance; } }懒汉式单例public class Singleton { private static Singleton instance = null; private Singleton() {} public static synchronized Singleton getInstance(){ if (instance == null) instance = new Singleton(); return instance; } } public class Singleton { private static Singleton instance = null; private Singleton() {} public static synchronized Singleton getInstance(){ if (instance == null) instance = new Singleton(); return instance; } }注意:实现一个单例有两点注意事项,①将构造器私有,不允许外界通过构造器创建对象;②通过公开的静态方法向外界返回类的唯一实例。这里有一个问题可以思考:Spring的IoC容器可以为普通的类创建单例,它是怎么做到的呢?
92、什么是UML?
答:UML是统一建模语言(Unified Modeling Language)的缩写,它发表于1997年,综合了当时已经存在的面向对象的建模语言、方法和过程,是一个支持模型化和软件系统开发的图形化语言,为软件开发的所有阶段提供模型化和可视化支持。使用UML可以帮助沟通与交流,辅助应用设计和文档的生成,还能够阐释系统的结构和行为。
93、UML中有哪些常用的图?
答:UML定义了多种图形化的符号来描述软件系统部分或全部的静态结构和动态结构,包括:用例图(use case diagram)、类图(class diagram)、时序图(sequence diagram)、协作图(collaboration diagram)、状态图(statechart diagram)、活动图(activity diagram)、构件图(component diagram)、部署图(deployment diagram)等。在这些图形化符号中,有三种图最为重要,分别是:用例图(用来捕获需求,描述系统的功能,通过该图可以迅速的了解系统的功能模块及其关系)、类图(描述类以及类与类之间的关系,通过该图可以快速了解系统)、时序图(描述执行特定任务时对象之间的交互关系以及执行顺序,通过该图可以了解对象能接收的消息也就是说对象能够向外界提供的服务)。用例图:

类图:
时序图:

94、用Ja写一个冒泡排序。
答:冒泡排序几乎是个程序员都写得出来,但是面试的时候如何写一个逼格高的冒泡排序却不是每个人都能做到,下面提供一个参考代码:
import ja.util.Comparator; /** * 排序器接口(策略模式: 将算法封装到具有共同接口的独立的类中使得它们可以相互替换) * @author nnngu * */ public interface Sorter { /** * 排序 * @param list 待排序的数组 */ public void sort(T[] list); /** * 排序 * @param list 待排序的数组 * @param comp 比较两个对象的比较器 */ public void sort(T[] list, Comparator comp); } import ja.util.Comparator; /** * 排序器接口(策略模式: 将算法封装到具有共同接口的独立的类中使得它们可以相互替换) * @author nnngu * */ public interface Sorter { /** * 排序 * @param list 待排序的数组 */ public void sort(T[] list); /** * 排序 * @param list 待排序的数组 * @param comp 比较两个对象的比较器 */ public void sort(T[] list, Comparator comp); }import ja.util.Comparator; /** * 冒泡排序 * * @author nnngu * */ public class BubbleSorter implements Sorter { @Override public void sort(T[] list) { boolean swapped = true; for (int i = 1, len = list.length; i < len && swapped; ++i) { swapped = false; for (int j = 0; j < len - i; ++j) { if (list[j].compareTo(list[j + 1]) > 0) { T temp = list[j]; list[j] = list[j + 1]; list[j + 1] = temp; swapped = true; } } } } @Override public void sort(T[] list, Comparator comp) { boolean swapped = true; for (int i = 1, len = list.length; i < len && swapped; ++i) { swapped = false; for (int j = 0; j < len - i; ++j) { if (comp.compare(list[j], list[j + 1]) > 0) { T temp = list[j]; list[j] = list[j + 1]; list[j + 1] = temp; swapped = true; } } } } } import ja.util.Comparator; /** * 冒泡排序 * * @author nnngu * */ public class BubbleSorter implements Sorter { @Override public void sort(T[] list) { boolean swapped = true; for (int i = 1, len = list.length; i < len && swapped; ++i) { swapped = false; for (int j = 0; j < len - i; ++j) { if (list[j].compareTo(list[j + 1]) > 0) { T temp = list[j]; list[j] = list[j + 1]; list[j + 1] = temp; swapped = true; } } } } @Override public void sort(T[] list, Comparator comp) { boolean swapped = true; for (int i = 1, len = list.length; i < len && swapped; ++i) { swapped = false; for (int j = 0; j < len - i; ++j) { if (comp.compare(list[j], list[j + 1]) > 0) { T temp = list[j]; list[j] = list[j + 1]; list[j + 1] = temp; swapped = true; } } } } }95、用Ja写一个折半查找。
答:折半查找,也称二分查找、二分搜索,是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组已经为空,则表示找不到指定的元素。这种搜索算法每一次比较都使搜索范围缩小一半,其时间复杂度是O(logN)。
import ja.util.Comparator; public class MyUtil { public static int binarySearch(T[] x, T key) { return binarySearch(x, 0, x.length- 1, key); } // 使用循环实现的二分查找 public static int binarySearch(T[] x, T key, Comparator comp) { int low = 0; int high = x.length - 1; while (low >> 1; int cmp = comp.compare(x[mid], key); if (cmp < 0) { low= mid + 1; } else if (cmp > 0) { high= mid - 1; } else { return mid; } } return -1; } // 使用递归实现的二分查找 private static int binarySearch(T[] x, int low, int high, T key) { if(low > 1); if(key.compareTo(x[mid])== 0) { return mid; } else if(key.compareTo(x[mid])< 0) { return binarySearch(x,low, mid - 1, key); } else { return binarySearch(x,mid + 1, high, key); } } return -1; } } import ja.util.Comparator; public class MyUtil { public static int binarySearch(T[] x, T key) { return binarySearch(x, 0, x.length- 1, key); } // 使用循环实现的二分查找 public static int binarySearch(T[] x, T key, Comparator comp) { int low = 0; int high = x.length - 1; while (low >> 1; int cmp = comp.compare(x[mid], key); if (cmp < 0) { low= mid + 1; } else if (cmp > 0) { high= mid - 1; } else { return mid; } } return -1; } // 使用递归实现的二分查找 private static int binarySearch(T[] x, int low, int high, T key) { if(low > 1); if(key.compareTo(x[mid])== 0) { return mid; } else if(key.compareTo(x[mid])< 0) { return binarySearch(x,low, mid - 1, key); } else { return binarySearch(x,mid + 1, high, key); } } return -1; } }说明:上面的代码中给出了折半查找的两个版本,一个用递归实现,一个用循环实现。需要注意的是计算中间位置时不应该使用(high+ low) / 2的方式,因为加法运算可能导致整数越界,这里应该使用以下三种方式之一:low + (high - low) / 2或low + (high – low) >> 1或(low + high) >>> 1(>>>是逻辑右移,是不带符号位的右移)