赛派号

世界品牌运动鞋子 1

Natural number This article is about the number. For the year AD 1, and other uses, see One (disambiguation) and Number One (disambiguation)

This article contains special characters. Without proper rendering support, you may see question marks, boxes, or other symbols. Natural number ← 0 1 2 → −1 0 1 2 3 4 5 6 7 8 9 → List of numbersIntegers← 0 10 20 30 40 50 60 70 80 90 →CardinaloneOrdinal1st(first)Numeral systemunaryFactorization∅Divisors1Greek numeralΑ´Roman numeralI, iGreek prefixmono-/haplo-Latin prefixuni-Binary12Ternary13Senary16Octal18Duodecimal112Hexadecimal116Greek numeralα'Arabic, Kurdish, Persian, Sindhi, Urdu١Assamese & Bengali১Chinese numeral一/弌/壹Devanāgarī१Santali᱑Ge'ez፩GeorgianႠ/ⴀ/ა(Ani)HebrewאJapanese numeral一/壱Kannada೧Khmer១ArmenianԱMalayalam൧Meitei꯱Thai๑Tamil௧Telugu೧Babylonian numeral𒐕Egyptian hieroglyph, Aegean numeral, Chinese counting rod𓏤Mayan numeral•Morse code. _ _ _ _

1 (one, unit, unity) is a number, numeral, and glyph. It is the first and smallest positive integer of the infinite sequence of natural numbers. This fundamental property has led to its unique uses in other fields, ranging from science to sports, where it commonly denotes the first, leading, or top thing in a group. 1 is the unit of counting or measurement, a determiner for singular nouns, and a gender-neutral pronoun. Historically, the representation of 1 evolved from ancient Sumerian and Babylonian symbols to the modern Arabic numeral.

In mathematics, 1 is the multiplicative identity, meaning that any number multiplied by 1 equals the same number. 1 is by convention not considered a prime number. In digital technology, 1 represents the "on" state in binary code, the foundation of computing. Philosophically, 1 symbolizes the ultimate reality or source of existence in various traditions.

In mathematics

The number 1 is the first natural number after 0. Each natural number, including 1, is constructed by succession, that is, by adding 1 to the previous natural number. The number 1 is the multiplicative identity of the integers, real numbers, and complex numbers, that is, any number n {\displaystyle n} multiplied by 1 remains unchanged ( 1 × n = n × 1 = n {\displaystyle 1\times n=n\times 1=n} ). As a result, the square ( 1 2 = 1 {\displaystyle 1^{2}=1} ), square root ( 1 = 1 {\displaystyle {\sqrt {1}}=1} ), and any other power of 1 is always equal to 1 itself.[1] 1 is its own factorial ( 1 ! = 1 {\displaystyle 1!=1} ), and 0! is also 1. These are a special case of the empty product.[2] Although 1 meets the naïve definition of a prime number, being evenly divisible only by 1 and itself (also 1), by modern convention it is regarded as neither a prime nor a composite number.[3]

Different mathematical constructions of the natural numbers represent 1 in various ways. In Giuseppe Peano's original formulation of the Peano axioms, a set of postulates to define the natural numbers in a precise and logical way, 1 was treated as the starting point of the sequence of natural numbers.[4][5] Peano later revised his axioms to begin the sequence with 0.[4][6] In the Von Neumann cardinal assignment of natural numbers, where each number is defined as a set that contains all numbers before it, 1 is represented as the singleton { 0 } {\displaystyle \{0\}} , a set containing only the element 0.[7] The unary numeral system, as used in tallying, is an example of a "base-1" number system, since only one mark – the tally itself – is needed. While this is the simplest way to represent the natural numbers, base-1 is rarely used as a practical base for counting due to its difficult readability.[8][9]

In many mathematical and engineering problems, numeric values are typically normalized to fall within the unit interval ([0,1]), where 1 represents the maximum possible value. For example, by definition 1 is the probability of an event that is absolutely or almost certain to occur.[10] Likewise, vectors are often normalized into unit vectors (i.e., vectors of magnitude one), because these often he more desirable properties. Functions are often normalized by the condition that they he integral one, maximum value one, or square integral one, depending on the application.[11]

1 is the value of Legendre's constant, introduced in 1808 by Adrien-Marie Legendre to express the asymptotic behior of the prime-counting function.[12] The Weil's conjecture on Tamagawa numbers states that the Tamagawa number τ ( G ) {\displaystyle \tau (G)} , a geometrical measure of a connected linear algebraic group over a global number field, is 1 for all simply connected groups (those that are path-connected with no 'holes').[13][14]

1 is the most common leading digit in many sets of real-world numerical data. This is a consequence of Benford’s law, which states that the probability for a specific leading digit d {\displaystyle d} is log 10 ⁡ ( d + 1 d ) {\textstyle \log _{10}\left({\frac {d+1}{d}}\right)} . The tendency for real-world numbers to grow exponentially or logarithmically biases the distribution towards smaller leading digits, with 1 occurring approximately 30% of the time.[15]

As a word See also: One (pronoun)

One originates from the Old English word an, derived from the Germanic root *ainaz, from the Proto-Indo-European root *oi-no- (meaning "one, unique").[16] Linguistically, one is a cardinal number used for counting and expressing the number of items in a collection of things.[17] One is most commonly a determiner used with singular countable nouns, as in one day at a time.[18] The determiner has two senses: numerical one (I he one apple) and singulative one (one day I'll do it).[19] One is also a gender-neutral pronoun used to refer to an unspecified person or to people in general as in one should take care of oneself.[20]

Words that derive their meaning from one include alone, which signifies all one in the sense of being by oneself, none meaning not one, once denoting one time, and atone meaning to become at one with the someone. Combining alone with only (implying one-like) leads to lonely, conveying a sense of solitude.[21] Other common numeral prefixes for the number 1 include uni- (e.g., unicycle, universe, unicorn), sol- (e.g., solo dance), derived from Latin, or mono- (e.g., monorail, monogamy, monopoly) derived from Greek.[22][23]

Symbols and representation History See also: History of the Hindu–Arabic numeral system

Among the earliest known records of a numeral system, is the Sumerian decimal-sexagesimal system on clay tablets dating from the first half of the third millennium BCE.[24] Archaic Sumerian numerals for 1 and 60 both consisted of horizontal semi-circular symbols, [25] by c. 2350 BCE, the older Sumerian curviform numerals were replaced with cuneiform symbols, with 1 and 60 both represented by the same mostly vertical symbol.

The Sumerian cuneiform system is a direct ancestor to the Eblaite and Assyro-Babylonian Semitic cuneiform decimal systems.[26] Surviving Babylonian documents date mostly from Old Babylonian (c. 1500 BCE) and the Seleucid (c. 300 BCE) eras.[24] The Babylonian cuneiform script notation for numbers used the same symbol for 1 and 60 as in the Sumerian system.[27]

The most commonly used glyph in the modern Western world to represent the number 1 is the Arabic numeral, a vertical line, often with a serif at the top and sometimes a short horizontal line at the bottom. It can be traced back to the Brahmic script of ancient India, as represented by Ashoka as a simple vertical line in his Edicts of Ashoka in c. 250 BCE.[28] This script's numeral shapes were transmitted to Europe via the Maghreb and Al-Andalus during the Middle Ages [29] The Arabic numeral, and other glyphs used to represent the number one (e.g., Roman numeral (I ), Chinese numeral (一)) are logograms. These symbols directly represent the concept of 'one' without breaking it down into phonetic components.[30]

Modern typefaces This Woodstock typewriter from the 1940s lacks a separate key for the numeral 1.Hoefler Text, a typeface designed in 1991, uses text figures and represents the numeral 1 as similar to a small-caps I.

In modern typefaces, the shape of the character for the digit 1 is typically typeset as a lining figure with an ascender, such that the digit is the same height and width as a capital letter. However, in typefaces with text figures (also known as Old style numerals or non-lining figures), the glyph usually is of x-height and designed to follow the rhythm of the lowercase, as, for example, in Horizontal guidelines with a one fitting within lines, a four extending below guideline, and an eight poking above guideline.[31] In many typefaces with text figures, the numeral 1 features parallel serifs at the top and bottom, resembling a small caps version of the Roman numeral I.[32][33] Many older typewriters do not he a dedicated key for the numeral 1, requiring the use of the lowercase letter L or uppercase I as substitutes.[34][35][36][37]

Decorative clay/stone circular off-white sundial with bright gold stylized sunburst in center of the 24-hour clock face, one through twelve clockwise on right, and one through twelve again clockwise on left, with J shapes where ones' digits would be expected when numbering the clock hours. Shadow suggests 3 PM toward the lower left.The 24-hour tower clock in Venice, using J as a symbol for 1

The lower case "j" can be considered a swash variant of a lower-case Roman numeral "i", often employed for the final i of a "lower-case" Roman numeral. It is also possible to find historic examples of the use of j or J as a substitute for the Arabic numeral 1.[38][39][40][41] In German, the serif at the top may be extended into a long upstroke as long as the vertical line. This variation can lead to confusion with the glyph used for seven in other countries and so to provide a visual distinction between the two the digit 7 may be written with a horizontal stroke through the vertical line.[42]

In other fields

In digital technology, data is represented by binary code, i.e., a base-2 numeral system with numbers represented by a sequence of 1s and 0s. Digitised data is represented in physical devices, such as computers, as pulses of electricity through switching devices such as transistors or logic gates where "1" represents the value for "on". As such, the numerical value of true is equal to 1 in many programming languages.[43][44] In lambda calculus and computability theory, natural numbers are represented by Church encoding as functions, where the Church numeral for 1 is represented by the function f {\displaystyle f} applied to an argument x {\displaystyle x} once (1 f x = f x {\displaystyle fx=fx} ).[45]

In physics, selected physical constants are set to 1 in natural unit systems in order to simplify the form of equations; for example, in Planck units the speed of light equals 1.[46] Dimensionless quantities are also known as 'quantities of dimension one'.[47] In quantum mechanics, the normalization condition for wefunctions requires the integral of a wefunction's squared modulus to be equal to 1.[48] In chemistry, hydrogen, the first element of the periodic table and the most abundant element in the known universe, has an atomic number of 1. Group 1 of the periodic table consists of hydrogen and the alkali metals.[49]

In philosophy, the number 1 is commonly regarded as a symbol of unity, often representing God or the universe in monotheistic traditions.[50] The Pythagoreans considered the numbers to be plural and therefore did not classify 1 itself as a number, but as the origin of all numbers. In their number philosophy, where odd numbers were considered male and even numbers female, 1 was considered neutral capable of transforming even numbers to odd and vice versa by addition.[50] The Neopythagorean philosopher Nicomachus of Gerasa's number treatise, as recovered by Boethius in the Latin translation Introduction to Arithmetic, affirmed that one is not a number, but the source of number.[51] In the philosophy of Plotinus (and that of other neoplatonists), 'The One' is the ultimate reality and source of all existence.[52] Philo of Alexandria (20 BC – AD 50) regarded the number one as God's number, and the basis for all numbers.[53]

See also −1 0.999... – Alternative decimal expansion of 1 References ^ Colman 1912, pp. 9–10, chapt.2. ^ Graham, Knuth & Patashnik 1994, p. 111. ^ Caldwell & Xiong 2012, pp. 8–9. ^ a b Kennedy 1974, pp. 389. ^ Peano 1889, p. 1. ^ Peano 1908, p. 27. ^ Halmos 1974, p. 32. ^ Hodges 2009, p. 14. ^ Hext 1990. ^ Graham, Knuth & Patashnik 1994, p. 381. ^ Blokhintsev 2012, p. 35. ^ Pintz 1980, pp. 733–735. ^ Gaitsgory & Lurie 2019, pp. 204–307. ^ Kottwitz 1988. ^ Miller 2015, pp. 3–4. ^ "Online Etymology Dictionary". etymonline.com. Douglas Harper. Archived from the original on December 30, 2013. Retrieved December 30, 2013. ^ Hurford 1994, pp. 23–24. ^ Huddleston, Pullum & Reynolds 2022, p. 117. ^ Huddleston & Pullum 2002, pp. 386. ^ Huddleston & Pullum 2002, p. 426-427. ^ Conway & Guy 1996, pp. 3–4. ^ Chrisomalis, Stephen. "Numerical Adjectives, Greek and Latin Number Prefixes". The Phrontistery. Archived from the original on January 29, 2022. Retrieved February 24, 2022. ^ Conway & Guy 1996, p. 4. ^ a b Conway & Guy 1996, p. 17. ^ Chrisomalis 2010, p. 241. ^ Chrisomalis 2010, p. 244. ^ Chrisomalis 2010, p. 249. ^ Acharya, Eka Ratna (2018). "Evidences of Hierarchy of Brahmi Numeral System". Journal of the Institute of Engineering. 14 (1): 136–142. doi:10.3126/jie.v14i1.20077. ^ Schubring 2008, pp. 147. ^ Crystal 2008, pp. 289. ^ Cullen 2007, p. 93. ^ Hendel, Richard (2013). Aspects of Contemporary Book Design. University of Iowa Press. p. 146. ISBN 9781609381752. ^ Katz, Joel (2012). Designing Information: Human Factors and Common Sense in Information Design. John Wiley & Sons. p. 82. ISBN 9781118420096. ^ "Why Old Typewriters Lack A "1" Key". Post Haste Telegraph Company. April 2, 2017. ^ Polt 2015, pp. 203. ^ Chicago 1993, pp. 52. ^ Guastello 2023, pp. 453. ^ Köhler, Christian (November 23, 1693). "Der allzeitfertige Rechenmeister". p. 70 – via Google Books. ^ "Naeuw-keurig reys-boek: bysonderlijk dienstig voor kooplieden, en reysende persoonen, sijnde een trysoor voor den koophandel, in sigh begrijpende alle maate, en gewighte, Boekhouden, Wissel, Asseurantie ... : vorders hoe men ... kan reysen ... door Neederlandt, Duytschlandt, Vrankryk, Spanjen, Portugael en Italiën ..." by Jan ten Hoorn. November 23, 1679. p. 341 – via Google Books. ^ "Articvli Defensionales Peremptoriales & Elisivi, Bvrgermaister vnd Raths zu Nürmberg, Contra Brandenburg, In causa die Fraiszlich Obrigkait [et]c: Produ. 7. Feb. Anno [et]c. 33". Heußler. November 23, 1586. p. 3. Archived from the original on November 13, 2024. Retrieved December 2, 2023 – via Google Books. ^ August (Herzog), Braunschweig-Lüneburg (November 23, 1624). "Gusti Seleni Cryptomenytices Et Cryptographiae Libri IX.: In quibus & planißima Steganographiae a Johanne Trithemio ... magice & aenigmatice olim conscriptae, Enodatio traditur; Inspersis ubique Authoris ac Aliorum, non contemnendis inventis". Johann & Heinrich Stern. p. 285 – via Google Books. ^ Huber & Headrick 1999, pp. 181. ^ Woodford 2006, p. 9. ^ Godbole 2002, p. 34. ^ Hindley & Seldin 2008, p. 48. ^ Glick, Darby & Marmodoro 2020, pp. 99. ^ Mills 1995, pp. 538–539. ^ McWeeny 1972, pp. 14. ^ Emsley 2001. ^ a b Stewart 2024. ^ British Society for the History of Science (July 1, 1977). "From Abacus to Algorism: Theory and Practice in Medieval Arithmetic". The British Journal for the History of Science. 10 (2). Cambridge University Press: Abstract. doi:10.1017/S0007087400015375. S2CID 145065082. Archived from the original on May 16, 2021. Retrieved May 16, 2021. ^ Halfwassen 2014, pp. 182–183. ^ "De Allegoriis Legum", ii.12 [i.66] Sources Blokhintsev, D. I. (2012). Quantum Mechanics. Springer Science & Business Media. ISBN 978-9401097116. Caldwell, Chris K.; Xiong, Yeng (2012). "What is the smallest prime?". Journal of Integer Sequences. 15 (9, Article 12.9.7). Waterloo, CA: University of Waterloo Did R. Cheriton School of Computer Science: 1–14. arXiv:1209.2007. MR 3005530. Zbl 1285.11001. Archived from the original on 2023-12-16. Retrieved 2023-12-16. Chicago, University of (1993). The Chicago Manual of Style (14th ed.). University of Chicago Press. ISBN 0-226-10389-7. Chrisomalis, Stephen (2010). Numerical Notation: A Comparative History. New York: Cambridge University Press. doi:10.1017/CBO9780511676062. ISBN 978-0-521-87818-0. Colman, Samuel (1912). Coan, C. Arthur (ed.). Nature's Harmonic Unity: A Treatise on Its Relation to Proportional Form. New York and London: G.P. Putnam's Sons. Crystal, D. (2008). A Dictionary of Linguistics and Phonetics (6th ed.). Malden, MA: Wiley-Blackwell. ISBN 978-0631226642. Conway, John H.; Guy, Richard K. (1996). The Book of Numbers. New York: Copernicus Publications. doi:10.1007/978-1-4612-4072-3. ISBN 0614971667. Archived from the original on 2024-11-18. Retrieved 2023-12-17. Cullen, Kristin (2007). Layout Workbook: A Real-World Guide to Building Pages in Graphic Design. Gloucester, MA: Rockport Publishers. pp. 1–240. ISBN 978-1-592-533-527. Emsley, John (2001). Nature's Building Blocks: An A-Z Guide to the Elements (illustrated, reprint ed.). Oxford, UK: Oxford University Press. ISBN 0198503415. Gaitsgory, Dennis; Lurie, Jacob (2019). Weil's Conjecture for Function Fields (Volume I). Annals of Mathematics Studies. Vol. 199. Princeton: Princeton University Press. pp. viii, 1–311. doi:10.2307/j.ctv4v32qc. ISBN 978-0-691-18213-1. MR 3887650. Zbl 1439.14006. Archived from the original on 2024-11-12. Retrieved 2023-12-16. Glick, Did; Darby, George; Marmodoro, Anna (2020). The Foundation of Reality: Fundamentality, Space, and Time. Oxford University Press. ISBN 978-0198831501. Guastello, Stephen J. (2023). Human Factors Engineering and Ergonomics: A Systems Approach (3rd ed.). CRC press. ISBN 978-1000822045. Godbole, Achyut S. (2002). Data Comms & Networks. Tata McGraw-Hill Education. ISBN 978-1-259-08223-8. Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren (1994). Concrete Mathematics (2 ed.). Reading, MA: Addison-Wesley. ISBN 0-201-14236-8. Halfwassen, Jens (2014). "The Metaphysics of the One". In Remes, Pauliina; Sleva-Griffin, Svetla (eds.). The Routledge Handbook of Neoplatonism. Routledge Handbooks in Philosophy. Abingdon, Oxfordshire and New York: Routledge. ISBN 9781138573963. Halmos, Paul R. (1974). Naive Set Theory. Undergraduate Texts in Mathematics. Springer. pp. vii, 1–104. doi:10.1007/978-1-4757-1645-0. ISBN 0-387-90092-6. MR 0453532. Hext, Jan (1990). Programming Structures: Machines and programs. Vol. 1. Prentice Hall. p. 33. ISBN 9780724809400.. Hindley, J. Roger; Seldin, Jonathan P. (2008). Lambda-Calculus and Combinators: An Introduction (2nd ed.). Cambridge, UK: Cambridge University Press. pp. xi, 1–358. ISBN 978-1-139-473-248. MR 2435558. Hodges, Andrew (2009). One to Nine: The Inner Life of Numbers. New York, NY: W. W. Norton & Company. pp. 1–330. ISBN 9780385672665. S2CID 118490841. Huber, Roy A.; Headrick, A. M. (1999). Handwriting Identification: Facts and Fundamentals. CRC Press. ISBN 1420048775. Huddleston, Rodney D.; Pullum, Geoffrey K.; Reynolds, Brett (2022). A student's Introduction to English Grammar (2nd ed.). Cambridge: Cambridge University Press. pp. 1–418. ISBN 978-1-316-51464-1. OCLC 1255524478. Archived from the original on 2024-07-12. Retrieved 2023-12-16. Huddleston, Rodney D.; Pullum, Geoffrey K. (2002). The Cambridge grammar of the English language. Cambridge, UK; New York: Cambridge University Press. ISBN 978-0-521-43146-0. Hurford, James R. (1994). Grammar: A Student's Guide. Cambridge, UK: Cambridge University Press. pp. 1–288. ISBN 978-0-521-45627-2. OCLC 29702087. Kennedy, Hubert C. (1974). "Peano's concept of number". Historia Mathematica. 1 (4): 387–408. doi:10.1016/0315-0860(74)90031-7. Kottwitz, Robert E. (1988). "Tamagawa numbers". Annals of Mathematics. 2. 127 (3). Princeton, NJ: Princeton University & the Institute for Advanced Study: 629–646. doi:10.2307/2007007. JSTOR 2007007. MR 0942522. McWeeny, Roy (1972). Quantum Mechanics: Principles and Formalism. Dover Books on Physics (reprint ed.). Courier Corporation, 2012. ISBN 0486143805. Miller, Steven J., ed. (2015). Benford's law: theory and applications. Princeton, NJ: Princeton University Press. pp. xxvi, 1–438. ISBN 978-0-691-14761-1. MR 3408774. Archived from the original on 2024-07-14. Retrieved 2023-12-16. Mills, I. M. (1995). "Unity as a Unit". Metrologia. 31 (6): 537–541. Bibcode:1995Metro..31..537M. doi:10.1088/0026-1394/31/6/013. Peano, Giuseppe (1889). Arithmetices principia, nova methodo exposita [The principles of arithmetic, presented by a new method]. An excerpt of the treatise where Peano first presented his axioms, and recursively defined arithmetical operations. Turin: Fratres Bocca. pp. xvi, 1–20. JFM 21.0051.02. Peano, Giuseppe (1908). Formulario Mathematico [Mathematical Formulary] (V ed.). Turin: Fratres Bocca. pp. xxxvi, 1–463. JFM 39.0084.01. Pintz, Janos (1980). "On Legendre's Prime Number Formula". The American Mathematical Monthly. 87 (9): 733–735. doi:10.2307/2321863. ISSN 0002-9890. JSTOR 2321863. Polt, Richard (2015). The Typewriter Revolution: A Typist's Companion for the 21st Century. The Countryman Press. ISBN 978-1581575873. Schubring, Gert (2008). "Processes of Algebraization". Semiotics in Mathematics Education: Epistemology, History, Classroom, and Culture. By Radford, Luis; Schubring, Gert; Seeger, Falk. Kaiser, Gabriele (ed.). Semiotic Perspectives in the Teaching and Learning of Math Series. Vol. 1. Netherlands: Sense Publishers. ISBN 978-9087905972. Stewart, Ian (2024). "Number Symbolism". Brittanica. Archived from the original on 2008-07-26. Retrieved 2024-08-21. Woodford, Chris (2006). Digital Technology. Evans Brothers. ISBN 978-0-237-52725-9. Retrieved 2016-03-24. vteIntegers−2, −10s  0   1   2   3   4   5   6   7   8   9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100s 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200s 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300s 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400s 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500s 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600s 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700s 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800s 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900s 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000s 1000 1001 1023 1024 1089 1093 1105 1234 1289 1458 1510 1728 1729 1980 1987 2000 2016 2520 3000 3511 4000 4104 5000 5040 6000 6174 7000 7744 7825 8000 8128 8192 9000 9855 9999 10,000 16,807 20,000 30,000 40,000 50,000 60,000 64,079 65,535 65,536 65,537 70,000 80,000 90,000 100,000 142,857 144,000 1,000,000 10,000,000 43,112,609 100,000,000 1,000,000,000 2,147,483,647 4,294,967,295 10,000,000,000 100,000,000,000 1,000,000,000,000 10,000,000,000,000 vteNumber theoryFields Algebraic number theory (class field theory, non-abelian class field theory, Iwasawa theory, Iwasawa–Tate theory, Kummer theory) Analytic number theory (analytic theory of L-functions, probabilistic number theory, sieve theory) Geometric number theory Computational number theory Transcendental number theory Diophantine geometry (Arakelov theory, Hodge–Arakelov theory) Arithmetic combinatorics (additive number theory) Arithmetic geometry (anabelian geometry, p-adic Hodge theory) Arithmetic topology Arithmetic dynamics Key concepts Numbers 0 Natural numbers Unity Prime numbers Composite numbers Rational numbers Irrational numbers Algebraic numbers Transcendental numbers p-adic numbers (p-adic analysis) Arithmetic Modular arithmetic Chinese remainder theorem Arithmetic functions Advanced concepts Quadratic forms Modular forms L-functions Diophantine equations Diophantine approximation Irrationality measure Simple continued fractions Category List of topics List of recreational topics Wikibook Wikiversity Authority control databases Edit this at WikidataInternationalGNDNationalUnited StatesKoreaIsraelOtherYale LUX

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至lsinopec@gmail.com举报,一经查实,本站将立刻删除。

上一篇 没有了

下一篇没有了